Word Sequences

What's the longest sequence of words you can make, beginning with any word and adding one letter at a time, if each step must also be a word?

If you can add them only at the end, a computer search outputs the dubious:

co
com
comp
compo
compos
compose
composer
composers

Adding letters only at the beginning I get the equally doubtful:

es
hes
shes
ashes
lashes
plashes
splashes

If you add can add letters on either end, I found this valid 10-letter sequence:

I
in
tin
ting
sting
siting
sitting
slitting
splitting
splittings

My personal favorite, allowing rearranging letters, yields this whopping 15-letter series:

I
it
tie
rite
irate
attire
cattier
interact
intricate
recitation
ratiocinate
ratiocinated
accreditation
contraindicate
contraindicated

The above answers found using a python, and the GNU aspell dictionary. Words containing ', -, or capital letters were removed.

Tagged

Printable 30-Day Checklists

I've been keeping track of my daily exercise using a checklist on the wall.

checklist on a wall

I wanted a nice small printable one. I looked around, and there were several for sale for $2. I made a free one, instead.

a minimalist daily checklist
a minimalist daily checklist

Here's the download link: 26 row. Or if you hate blank rows, here are some with less rows: 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

And of course, I customized one with my own workout routine.

my workout routine
my workout routine
Tagged ,

Repulsive Dots

Lately I’ve been messing about in Godot, a framework for making video games (similar to Unity).

I wanted to make a 3D game. In my game, you live in a geodesic dome, and can’t go outside, because mumble mumble mumble poisonous atmosphere?.

A geodesic dome, I learned, is related to the icosahedron, or d20 from RPGs.

A simple dome is the top half of the icosahedron. As they get more complex, you divide each triangle into more and more smaller triangles.

Icosahedron getting more and more detailed. Geodesic domes are the top half of each sphere.
Icosahedron getting more and more detailed. Geodesic domes are the top half of each sphere.

So to make a nice geodesic dome, we could find one (I failed), make one in Blender (too hard), or use some math to generate one in Godot. And to do that math, we need to know the list of 20 icosahedron faces. Which basically just needs the list of the 12 vertices!

Now, obviously you could look up the vertices, but I thought of a more fun way. Let’s put 12 points on a sphere, make them all repel each other (think magnetically, I guess), and see where on the sphere they slide to. Maybe they will all be spaced out evenly in the right places. Well, here’s what it looks like:

So… kinda? It was certainly entertaining.

By the way, the correct coordinates for the vertices of an icosahedron inside a unit sphere are:

  • the top at (0, 1, 0)
  • the bottom at (0, -1, 0)
  • 10 equally spaced points around a circle. they alternate going up and down below the center line.
    (±1/√5, sin(angle), cos(angle)) [projected onto the sphere]
Tagged , ,

Even more URI handlers in Linux

Sometimes Linux wants to open files. I mostly use the command line, so I wrote some helper programs to open things in terminals.

  • open-text-file opens your default text editor in a terminal. I set it as my program to open all text files.
  • open-directory opens a terminal with that working directory. I set it as my program to open all directories.

They’re both available in short-programs. Both default to xterm.

Tagged

URI handlers in Linux

When you click an email address, it automatically opens in your email client. But I don’t have an email client, I use webmail. I wrote a custom handler for Linux.

First write a program to open mailto links. Mailto links look like “mailto:me@mail.com” or maybe even “mailto:me@mail.com?subject=mysubject&body=mybody“. Test it by hand on a few links. Mine (mailto-opener) composes a new message using my webmail.

Next, write a desktop file for the opener. Here’s one:

#/usr/local/share/applications/mailto-opener.desktop 
[Desktop Entry]
Type=Application
Name=mailto: link opener (github.com/za3k/short-programs)

# The executable of the application, possibly with arguments.
Exec=/home/zachary/.projects/short-programs/mailto-opener %u

Note the %u in the Exec= line. That’s required.

Now update your system mimetype database. On my Arch Linux install, I run

xdg-mime default mailto-opener.desktop x-scheme-handler/mailto

Finally, restart your browser. Really. Firefox and Chromium/Chrome both cache mimetype openers.


A related opener I added recently was for magnet links, such as are popularly used for bittorrent.

~ $ cat /usr/local/share/applications/transmission-remote.desktop 
[Desktop Entry]
Type=Application
Name=transmission-remote magnet link opener
Exec=transmission-remote <TRANSMISSION INSTANCE> -a

transmission-remote is the name of a command-line Linux program. It connects to an instance of Tranmission (a popular torrent client) running on another machine.

Tagged

Zorchpad update: first 3d print

I’ve been designing a keyboard and case for the zorchpad.

There are four pieces in the first iteration.

A top bottom base, to enclose the keyboard electronics.

A keyboard plate. The keys fit into the holes here. You type on the top, electronics go in the bottom.

A top plate. You see the screens, and switches through the cutouts. Otherwise, it keeps the behind-the-scenes wiring out of sight.

And finally, the top piece.

Here are the pieces in correct position. In the top will be the screens and battery. The bottom is a keyboard you type on. The whole things is meant to fold on a hinge, much like a laptop.

The same pieces, spread out.

There were many, many problems with the first design and the first print. I’ll talk about them (and my fixes) in my next post.

Tagged

Zorchpad keyboard update

The Zorchpad needs a custom keyboard. Its power budget is only 1mW, and there’s just nothing available in that range. So, I need to make a custom keyboard. I started reading up on how to make your own–especially the electronics.

I don’t know how to make a PCB:

PCB from HacKeyboard
PCB from HacKeyboard

Or how to attach headers to the inside of an existing keyboard, which looks like this–:

Mapping the Innards of a Keyboard : 7 Steps (with Pictures) - Instructables

But I found a project called GOLEM with an excellent guide to making your own keyboard. Here is their wiring:

GOLEM Macropad
GOLEM Macropad

I can do that! They got me out of a major rut.


Their advice walks you through how to do a small keyboard in a cardboard plate. I did a few keys, gauged the effort, and decided to use my 3D printer. Cutting out 50-60 keys precisely by hand doesn’t sound easy. Worse, if you mess up, you have to start over. In plastic, I can’t mess up halfway, and the spacers to support the keyboard can be part of the print.

Above, I’m designing a “sampler” keyboard in CAD (OpenSCAD). I want to iron out problems in my process before I try a full-size keyboard. Below, Prusa-Slic3r is slicing the finished model for my 3D printer to print.

Here’s the finished sampler keyboard:

Currently I’m waiting on keycaps and switches ordered from China, and then I’ll put together my finished keyboard. But I have been making some progress in the meantime. Here’s the layout I’m going to try.

And I’ve started streaming some development of a case and keyboard on Twitch (Tue/Thu 12pm noon, EDT). Feel free to join! Anyone can watch, but you need an account to chat.

Tagged ,

Zorchpad Update: Cardboard mockup, mk1

I’ve gotten to the point in Zorchpad development where I’d like to see how the whole thing fits together and if there will be any insurmountable problems. We’re still trying to figure out some things like–will it have one screen or two? What form factor will it be? Will the keyboard fold in half? So I put together a cardboard model.

This model has:

  • A power switch. I’m assuming the very first prototype will run on battery, not solar like the final one.
  • Two memory-in-pixel screens (total power usage: 0.001 W)
  • One e-ink display (total power usage: variable/unknown)
  • An apollo3 artemis board, which includes RAM, CPU, microphone, and BTLE (not pictured, total power usage about 0.0005 W)
  • One flash chip (not pictured, power usage variable)
  • A battery slot. I’m using AAA for my convenience (Holds: 3000 joules = ~20 days power)
  • An audio jack for headphones
  • A microSD slot
  • A custom keyboard (total power usage: variable/unknown)
    The keyboard is closely modeled off a standard one, for now.

Immediately, a few problems pop out:

  • It’s fairly long. This will stick out of my pocket. This is with very closely spaced keys on a somewhat reduced keyboard.
  • There’s not really a great place to put solar panels. It’s has almost zero free space, plus there’s going to be a lot of wiring. Are we going to drill holes through the solar panel to let wires pass through? Also, I really haven’t been able to figure out how many cm2 of solar we need.
  • It’s hard to get the screen to stay propped up on my cardboard model. I’d like a solution that doesn’t use hinges, since those tend to loosen over time.

My next step will probably be to make a custom working keyboard. Then, I’ll make an entire working zorchpad. Both will be either cardboard or 3d-printed (whichever is easier).

Tagged